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There are many layers…
(but nothing fancy…)

Security aspect
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User centricity of the protocol
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AS rely on consent of the user and the sanity of the 
authorization request to grant authorization code to 

clients.

Consent to clients
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AS rely on consent of the user and the sanity of the 
authorization request to grant authorization code to 

clients.

Consent to clients
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Whenever there is a person, an unconscious error or 
a social engineer attack can take place

Consent to clients
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• Complexity of the scopes

• User behavior

• Deceiving clients

Vectors
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• Scopes are not segregated
– “View and manage the files”
– “View and manage your mail”
– “Read Consumer” and “Write Consumer”

Complexity of the scopes
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• Scopes for processing sensitive data
– Mailbox scanners
– Monitoring tools for documents

Complexity of the scopes
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• Scopes for configuring tenants
– Configure federation
– Configure directories, instances, rules, etc.

(Everything that can be user for persistent access)

Complexity of the scopes
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Many recent attacks have too broad permissions 
granted as root cause

Recent attacks
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• Lack of awareness on what is been granted

• Play down the risk of granting access to the client

• Blame AS in case of abuse by the client

Users tend to over consent
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The permission granting UI needs to be explicit, 
prevent clickjacking and scopes should be planned 

to implement a segregation of permissions

Consent to client
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• Close or exact same name

• Non printable characters

• Same graphics

Deceiving clients
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Workflow with verification steps needs to take place 
when registering or changing client data

Deceiving clients
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Taking public client as confidential
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• Confidential clients have a credential established.

• Public clients don’t have a credential.
– Single page apps, Native apps or mobile apps can’t be 

shipped to customer with a credential

Confidential and public clients
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A common security problem is to take public clients 
as confidential, with the assumption that it was 
implemented by the company, or the secret is 

obfuscated on the app.

Common mistake
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Very often, the AS never ask for consent for those 
clients and too broad permissions are granted

On top of that
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Too much trust on an instance that can’t be verified

The security problem
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If you are implementing a client identification, or 
plan to implement it, you might be missing one 

simple option

The security problem
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individual instances of public client can register a 
credential and become confidential

Confidential and public clients
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the provisioning process can rely on Dynamic client 
registration (RFC 7591)

Confidential and public clients
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Protecting authorization request and code 
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Authorization request and code protection 
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client

authorization server

Resource
Owner

browser authorize

token

1 – Redirect to authorize endpoint 
with response_type=code

2 – The user login and grant the 
permission

3 – redirect to client with the 
authorization code

4 – client send the authorization 
code to token with credentials

5 – AS returns the access token, 
refresh token,  granted scopes and 
time to live of the token



• The authorization parameters are introspected by 
the browser

• There are some approaches that server can use to 
prevent that:
– Pushed Authorization Requests
– Request Objects or JAR

Authorization request disclosure or tamper evident
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• The code is required to be short living and single 
usage

• In case of public client, additional measures are 
required to prevent code interception
– Proof Key for Code Exchange (RFC7636)

Authorization code protection
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Open redirector
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Open Redirector
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client

authorization server

Resource
Owner

browser authorize

token

1 – Redirect to authorize endpoint 
with response_type=code

2 – The user login and grant the 
permission

3 – redirect to client with the 
authorization code

4 – client send the authorization 
code to token with credentials

5 – AS returns the access token, 
refresh token,  granted scopes and 
time to live of the token



• The AS needs to validate the redirect_uri on the 
request against a set of registered uris

• Some security profiles require the redirect uri to 
be compared as exactly and in full

Security concern – Open Redirector
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Affecting clients

Security
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Redirect uri and CSRF
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client

authorization server

Resource
Owner

browser authorize

token

1 – Redirect to authorize endpoint 
with response_type=code

2 – The user login and grant the 
permission

3 – redirect to client with the 
authorization code

GET https://client.com/cb?code=abc&state=XYZ

GET https://as.com/auth?state=XYZ



The client should use the state parameter. It can be 
used in Double submit cookie or as Synchronizer 

Token patterns

Redirect uri and CSRF
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• When using it in Double submit cookie pattern the 
size might became a problem
– The constraint is the size of the url: 2048 chars

• When implementing as Synchronizer Token it is 
sufficient

state support in practice
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Bearer token
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Client impersonation
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• Access token is sent back and forth between client 
and resource servers

• Transport between client and resource server 
should have forward secrecy

Client impersonation
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• Specifications for locking the access token to the 
specific client instance
– MTLS bound (RFC 8705)
– DPOP (draft-04 just published)

Access token
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• It is sent back and forth between client and 
authorization server

• Very often is long living
• Transport between client and AS should have 

forward secrecy

Refresh token
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