
OAuth 2.0
Authorization Code flow
Security concerns

There are many layers…
(but nothing fancy…)

Security aspect

2Authlete Copyright © 2015 - 2021

User centricity of the protocol

3Authlete Copyright © 2015 - 2021

AS rely on consent of the user and the sanity of the
authorization request to grant authorization code to

clients.

Consent to clients

4Authlete Copyright © 2015 - 2021

AS rely on consent of the user and the sanity of the
authorization request to grant authorization code to

clients.

Consent to clients

5Authlete Copyright © 2015 - 2021

Whenever there is a person, an unconscious error or
a social engineer attack can take place

Consent to clients

6Authlete Copyright © 2015 - 2021

• Complexity of the scopes

• User behavior

• Deceiving clients

Vectors

7Authlete Copyright © 2015 - 2021

• Scopes are not segregated
– “View and manage the files”
– “View and manage your mail”
– “Read Consumer” and “Write Consumer”

Complexity of the scopes

8Authlete Copyright © 2015 - 2021

• Scopes for processing sensitive data
– Mailbox scanners
– Monitoring tools for documents

Complexity of the scopes

9Authlete Copyright © 2015 - 2021

• Scopes for configuring tenants
– Configure federation
– Configure directories, instances, rules, etc.

(Everything that can be user for persistent access)

Complexity of the scopes

10Authlete Copyright © 2015 - 2021

Many recent attacks have too broad permissions
granted as root cause

Recent attacks

11Authlete Copyright © 2015 - 2021

• Lack of awareness on what is been granted

• Play down the risk of granting access to the client

• Blame AS in case of abuse by the client

Users tend to over consent

12Authlete Copyright © 2015 - 2021

The permission granting UI needs to be explicit,
prevent clickjacking and scopes should be planned

to implement a segregation of permissions

Consent to client

13Authlete Copyright © 2015 - 2021

• Close or exact same name

• Non printable characters

• Same graphics

Deceiving clients

14Authlete Copyright © 2015 - 2021

Workflow with verification steps needs to take place
when registering or changing client data

Deceiving clients

15Authlete Copyright © 2015 - 2021

Taking public client as confidential

16Authlete Copyright © 2015 - 2021

• Confidential clients have a credential established.

• Public clients don’t have a credential.
– Single page apps, Native apps or mobile apps can’t be

shipped to customer with a credential

Confidential and public clients

17Authlete Copyright © 2015 - 2021

A common security problem is to take public clients
as confidential, with the assumption that it was
implemented by the company, or the secret is

obfuscated on the app.

Common mistake

18Authlete Copyright © 2015 - 2021

Very often, the AS never ask for consent for those
clients and too broad permissions are granted

On top of that

19Authlete Copyright © 2015 - 2021

Too much trust on an instance that can’t be verified

The security problem

20Authlete Copyright © 2015 - 2021

If you are implementing a client identification, or
plan to implement it, you might be missing one

simple option

The security problem

21Authlete Copyright © 2015 - 2021

individual instances of public client can register a
credential and become confidential

Confidential and public clients

22Authlete Copyright © 2015 - 2021

the provisioning process can rely on Dynamic client
registration (RFC 7591)

Confidential and public clients

23Authlete Copyright © 2015 - 2021

Protecting authorization request and code

24Authlete Copyright © 2015 - 2021

Authorization request and code protection

25

Authlete Copyright © 2015 - 2021
client

authorization server

Resource
Owner

browser authorize

token

1 – Redirect to authorize endpoint
with response_type=code

2 – The user login and grant the
permission

3 – redirect to client with the
authorization code

4 – client send the authorization
code to token with credentials

5 – AS returns the access token,
refresh token, granted scopes and
time to live of the token

• The authorization parameters are introspected by
the browser

• There are some approaches that server can use to
prevent that:
– Pushed Authorization Requests
– Request Objects or JAR

Authorization request disclosure or tamper evident

26Authlete Copyright © 2015 - 2021

• The code is required to be short living and single
usage

• In case of public client, additional measures are
required to prevent code interception
– Proof Key for Code Exchange (RFC7636)

Authorization code protection

27Authlete Copyright © 2015 - 2021

Open redirector

28Authlete Copyright © 2015 - 2021

Open Redirector

29

Authlete Copyright © 2015 - 2021
client

authorization server

Resource
Owner

browser authorize

token

1 – Redirect to authorize endpoint
with response_type=code

2 – The user login and grant the
permission

3 – redirect to client with the
authorization code

4 – client send the authorization
code to token with credentials

5 – AS returns the access token,
refresh token, granted scopes and
time to live of the token

• The AS needs to validate the redirect_uri on the
request against a set of registered uris

• Some security profiles require the redirect uri to
be compared as exactly and in full

Security concern – Open Redirector

30Authlete Copyright © 2015 - 2021

Affecting clients

Security

31Authlete Copyright © 2015 - 2021

Redirect uri and CSRF

32

Authlete Copyright © 2015 - 2021
client

authorization server

Resource
Owner

browser authorize

token

1 – Redirect to authorize endpoint
with response_type=code

2 – The user login and grant the
permission

3 – redirect to client with the
authorization code

GET https://client.com/cb?code=abc&state=XYZ

GET https://as.com/auth?state=XYZ

The client should use the state parameter. It can be
used in Double submit cookie or as Synchronizer

Token patterns

Redirect uri and CSRF

33Authlete Copyright © 2015 - 2021

• When using it in Double submit cookie pattern the
size might became a problem
– The constraint is the size of the url: 2048 chars

• When implementing as Synchronizer Token it is
sufficient

state support in practice

34Authlete Copyright © 2015 - 2021

Bearer token

35Authlete Copyright © 2015 - 2021

Client impersonation

36Authlete Copyright © 2015 - 2021

domain

Client
(3rd party)

Authorization
server

Resource
Owner

Resource
servertoken

• Access token is sent back and forth between client
and resource servers

• Transport between client and resource server
should have forward secrecy

Client impersonation

37Authlete Copyright © 2015 - 2021

• Specifications for locking the access token to the
specific client instance
– MTLS bound (RFC 8705)
– DPOP (draft-04 just published)

Access token

38Authlete Copyright © 2015 - 2021

• It is sent back and forth between client and
authorization server

• Very often is long living
• Transport between client and AS should have

forward secrecy

Refresh token

39Authlete Copyright © 2015 - 2021

www.authlete.com

OAuth 2.0
Authorization Code flow
Security concerns

