
FOR DEVELOPERS

Authlete: API Authorization Engine
The Authlete OAuth 2.0 and OpenID Connect solution allows developers 
to quickly implement secure authorization servers and identity providers.  

POST /auth/authorization/issue

POST /auth/token

POST /auth/introspection

Resource
Owner

User Agent Client
Authorization

Server
Resource

Server
Authlete

API

How Authlete Works

Why Authlete

Forward the authorization 
request “as-is”

Send a RO’s unique ID to 
issue a code (or token)

Send the code and 
receive tokens

(Start)

Authorization request

Authorization response

Token request

API request

API response

(End)

User authentication and consent

Token response

Ask to 
introspect

Authlete{

"action": "INTERACTION",

"ticket":"c4iy3TWGn74UMO7ihRbJbqxH-9Q”, 

…

}

Authlete returns a response that tells the 
authorization server what to do next.

Authlete{ "parameters":"response_type=code&client_

id=57297408867&redirect_uri=https%3A%2F%2F

client.example.org%2Fredirect..." }

POST /auth/authorization

API ACCESS w/ TOKENS

AUTHORIZATION REQUEST

Tutorials here!

Authorization
Server

FRONTEND

Authlete
API

BACKEND

Semi-hosted Architecture - Use your favorite programming 
languages 

- Customize UI/UX with no limit

- Bring API gateway and identity & 
access management solution of 
your choice

- Keep your users’ credentials 
internal

- Process requests with up-to-date 
OAuth/OIDC specs, including FAPI, 
CIBA and Device Flow

- Token management

- Up-to-date OAuth/
OIDC processor

- UI/UX

- OAuth decision 
logic

- Identity & access  
management

The Authlete semi-hosted 
architecture enables you to:

Sample implementation available at GitHub!



Supported Endpoints Authorization Endpoint, Token Endpoint, Revocation Endpoint, Introspection Endpoint, JWK Set Endpoint, User Info 
Endpoint, Backchannel Authentication Endpoint, Device Authorization Endpoint

Supported Grant Type authorization_code, implicit, password, client_credentials, refresh_token, urn:openid:params:grant-type:ciba (CIBA), 
urn:ietf:params:oauth:grant-type:device_code (Device Flow)

Supported Response Types none, code, token, id_token, code token, code id_token, id_token token, code id_token token 

Supported Response Modes query, fragment, form_post, jwt, query.jwt, fragment.jwt, form_post.jwt

Supported Client 
Authentication Methods

none, client_secret_basic, client_secret_post, client_secret_jwt, private_key_jwt, tls_client_auth, 
self_signed_tls_client_auth

Access Token Expiry configurable per service and scope

Refresh Token Expiry configurable per service and scope

ID Token Expiry configurable per service

Supported Signature 
Algorithm

HS256, HS384, HS512, RS256, RS384, RS512, ES256, ES384, ES512, PS256, PS384, PS512

Supported Encryption 
Algorithm

RSA1_5, RSA_OAEP, RSA_OAEP_256, A128KW, A192KW, A256KW, DIR, ECDH_ES, ECDH_ES_A128KW, 
ECDH_ES_A192KW, ECDH_ES_A256KW, A128GCMKW, A192GCMKW, A256GCMKW, PBES2_HS256_A128KW, 
PBES2_HS384_A192KW, PBES2_HS512_A256KW

Supported Encryption 
Encoding Algorithm

A128CBC_HS256, A192CBC_HS384, A256CBC_HS512, A128GCM, A192GCM, A256GCM

Supported Specifications RFC 6749: The OAuth 2.0 Authorization Framework
RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage
RFC 7009: OAuth 2.0 Token Revocation
RFC 7523: JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol
RFC 7592: OAuth 2.0 Dynamic Client Registration Management Protocol
RFC 7636: Proof Key for Code Exchange by OAuth Public Clients
RFC 7662: OAuth 2.0 Token Introspection
RFC 8628: OAuth 2.0 Device Authorization Grant
OAuth 2.0 Multiple Response Type Encoding Practices
OAuth 2.0 Form Post Response Mode
OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens
OpenID Connect Core 1.0
OpenID Connect Discovery 1.0
OpenID Connect Dynamic Client Registration 1.0
OpenID Connect Client Initiated Backchannel Authentication Flow - Core 1.0
Financial-grade API - Part 1: Read-Only API Security Profile
Financial-grade API - Part 2: Read and Write API Security Profile
Financial-grade API: JWT Secured Authorization Response Mode for OAuth 2.0 (JARM)
Financial-grade API: Client Initiated Backchannel Authentication Profile
UK Open Banking Security Profile

Unique Authlete 
Functionality

ClientID Alias
Extra Token Properties
Scope Attribute
Refresh Token Kept
Single Access Token Per Subject
Granted Scopes Management

authlete.com sales@authlete.com github.com/authlete @authlete

Spec Sheet

Hosting Options Business plan: shared managed cloud
Enterprise plan: dedicated managed cloud or on-premise

Service Level Objective 99.9 – 99.99 % Availability for managed cloud (on-premise can go even higher!)

Performance 100+ transactions per second on the best effort basis for managed cloud

Support Level Technical for Business plan / Enterprise or Premium for Enterprise plan
Delivered by OAuth/OIDC spec committers
Professional Service available 


